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1. Introduction

Electroweak baryogenesis [1] is typically described by a set of transport equations, which

are fueled by CP-violating source terms. The source terms arise from the CP-violating

interactions of particles in the hot plasma with the expanding bubble walls during a first

order electroweak phase transition [2]. By diffusion the sources move into the symmetric

phase [3], where baryon number violation is fast. For walls much thicker than the inverse

transition temperature the wall-plasma interactions can be treated in a WKB approxima-

tion, which corresponds to an expansion in gradients of the bubble profile. At first order

in gradients a CP-violating shift is induced in the dispersion relations of particles crossing

the bubble wall [4]. A (semiclassical) force results, different for particles and antiparti-

cles, which creates a non-zero left-handed quark density in front of the bubble. The weak

sphalerons partly transform this left-handed quark density into a baryon asymmetry.

The WKB approach has been widely used to study electroweak baryogenesis in various

extensions of the standard model (SM) [5 – 11]. (An alternative approach was followed in

ref. [12].) In the simplest manner, the WKB dispersion relations were computed by solving

the one-particle Dirac equation to first order in gradients in the CP-violating bubble wall

background. In a more rigorous treatment similar dispersion relations were also derived in

the Schwinger-Keldysh formalism [13 – 15] (see ref. [16] for some earlier work).

Comparing the dispersion relation of a single Dirac fermion obtained from the Dirac

equation (see. e.g. ref. [5]) to that derived from the Schwinger-Keldysh formalism, one

observes that the CP-violating part of the latter is somewhat enhanced. In ref. [14] it was

shown that this mismatch disappears when the result gained from the Dirac equation is

correctly boosted to a general Lorentz frame. Thus in the case of a single Dirac fermion,

the full Schwinger-Keldysh result can be obtained in a much simpler way. For realistic

models of electroweak baryogenesis, as investigated in the WKB approach, the corrected

dispersion relation has only been used in the erratum of ref. [7]. It is therefore important

to check to what extent the numerical results of the WKB literature are affected.
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In the current paper we study the impact of the modified dispersion relation on the

generated baryon asymmetry. To test the numerical significance of this effect we recompute

the baryon asymmetry in the SM augmented by dimension-6 operators [10]. Using the

correct dispersion relation does enhance the baryon asymmetry by a factor of up to about 2.

We also improve on the transport equations, keeping scatterings with W bosons at a

finite rate, which considerably reduces or enhances the baryon asymmetry, depending on

the wall velocity. We also show that the position dependence of certain thermal averages

in the transport equations has a substantial impact on the baryon asymmetry. Finally, we

investigate to what extent the CP-violating source terms are influenced by CP-conserving

perturbations in the plasma, an effect that turns out to be negligible. In total, depending

on the model parameters, our refinements can increase the baryon asymmetry by a factor

of up to about 5.

2. The semiclassical force

Let us review the compution of the dispersion relation in the WKB approach as presented

in ref. [14]. We consider a single Dirac fermion, such as the top quark. Its mass changes as

it passes the bubble wall. Once the bubble has sufficiently grown, we can approximate the

bubble wall by a planar profile. The profile is kink-shaped and characterized by a wall thick-

ness Lw. The problem is most simply treated in the rest frame of the bubble wall. In the

presence of CP-violation, the fermion mass term can be complex, i.e. Re(M)+iγ5Im(M),

where

M = m(z)eiθ(z) (2.1)

and z is the coordinate perpendicular to the bubble wall.

For a particle with momentum much larger than L−1
w we can solve the Dirac equation

using a WKB ansatz

Ψ ∼ e−iωt+i
R z

pcz(z′)dz′ (2.2)

and expand in gradients of M. Here pcz is the canonical momentum along the z direction.

To simplify the solution we have boosted to the frame where the momentum perpendicular

to the wall is zero. Since the typical momentum of a particle in the plasma is on the order

of the temperature T , this approach is valid for thick bubbles, i.e. TLw À 1. Note that at

this stage the fermion is treated as a free particle. Scatterings with particles in the plasma

will be incorporated later on by means of the Boltzmann equation.

As shown in ref. [7] the dispersion relation is, to first order in gradients

ω =
√

(pcz − αCP )2 + m2 ∓
sθ′

2
, (2.3)

with θ′ = ∂zθ, αCP = α′ ± θ′

2 , and s = 1 (−1) for z-spin up (down). The upper (lower)

sign corresponds to particles and antiparticles, respectively, which this way get different

dispersion relations. The additional phase α is related to an ambiguity in the definition of

the canonical momentum, when replacing Ψ → eiα(z)Ψ. It was the main result of refs. [6, 7]

that this ambiguity disappears when all quantities are expressed in terms of the kinetic

momentum rather than the canonical momentum.
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In ref. [7] the dispersion relation (2.3) was used to compute the semiclassical force,

which was then generalized to a Lorentz frame with finite momentum parallel to the wall.

In ref. [14] it was pointed out that first eq. (2.3) should be boosted to the general frame and

all further manipulations should be carried out later on. This way the dispersion relation

of ref. [15] is correctly reproduced.

Since Lorentz invariance is not broken parallel to the wall, we simply have to replace

ω2 → ω2 + p2
x + p2

y. Note that parallel to the wall we do not have to distinguish between

kinetic and canonical momentum, i.e. pcx,y = px,y. The dispersion relation (2.3) turns into

ω = ω0 ∓ s
θ′

2

ω0z

ω0
, (2.4)

where

ω0 =
√

(pcz − αCP )2 + p2
x + p2

y + m2

ω0z =
√

(pcz − αCP )2 + m2. (2.5)

In the limit ω0 = ω0z we are back at the old result. In the following we show that when

written in terms of the kinetic momentum the dependence on αCP still drops.

The physical kinetic z-momentum is given by pz = ωvgz, where vgz, the group velocity

of the WKB wave-packet in the z direction, is given by

vgz =

(

∂ω

∂pcz

)

z

=
pcz − αCP

ω0

(

1 ∓ s
θ′

2

ω2
0 − ω2

0z

ω2
0ω0z

)

. (2.6)

The kinetic momentum then is

pz = (pcz − α)

(

1 ∓ s
θ′

2ω0z

)

. (2.7)

We can use this expression to replace the canonical momentum in the dispersion rela-

tion (2.4). To stress the difference, we introduce a new symbol, E, to denote energy

expressed in terms of the kinetic momentum. Defining

E0 =
√

p2
z + p2

x + p2
y + m2

E0z =
√

p2
z + m2, (2.8)

we obtain, to first order in gradients

E = E0 ± ∆E = E0 ∓ s
θ′m2

2E0E0z
. (2.9)

Notice that the ambiguity related to αCP has disappeared. For the group velocity we now

find

vgz =
pz

E0

(

1 ± s
θ′

2

m2

E2
0E0z

)

. (2.10)

From the canonical equations of motion we can compute the force acting on the particle

Fz = ṗz =ωv̇gz = ω

(

ż

(

∂vgz

∂z

)

pcz

+ṗcz

(

∂vgz

∂pcz

)

z

)

=ω

(

vgz

(

∂vgz

∂z

)

pcz

−

(

∂ω

∂z

)

pcz

(

∂vgz

∂pcz

)

z

)

(2.11)
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where we have used the fact that ω is constant along the trajectory. Performing the partial

derivatives and replacing the canonical by the kinetic momentum, we finally obtain

Fz = −
(m2)′

2E0
± s

(m2θ′)′

2E0E0z
∓ s

θ′m2(m2)′

4E3
0E0z

. (2.12)

Thus particles and antiparticles experience a different force as they pass the bubble wall.

This CP-violating part of the force is second order in derivatives. There is also a CP-

conserving part, which is first order in derivatives.

The expressions for the dispersion relation (2.9), the group velocity (2.10), and the

semiclassical force (2.12) agree with the results of ref. [15], demonstrating that for a single

Dirac fermion the full Schwinger-Keldysh result can be obtained in a simpler way by means

of the Dirac equation. This is the main result of this letter.

In the special case E0 = E0z , i.e. when the particle has no momentum parallel to

the wall, the full results agree with those of ref. [7]. For a relativistic particle in the

plasma E0z contains only roughly a third of the total energy. Keeping correct track of

the factors E0z enhances the CP-violating part of the dispersion relation and the force

term by a factor of up to about 3. For non-relativistic particles the effect is smaller. This

factor has been neglected so far in computations of the baryon asymmetry based on the

WKB approximation of the Dirac equation (except for the erratum of ref. [7]). We will

demonstrate this enhancement in a numerical example in section 4.

In the next section we discuss the impact of the CP-violating force on the transport

equations of particles in the plasma. In a chiral theory, as the SM, interactions are related

to the chirality of a particle rather than its spin. Thus it is convenient to label particles

in terms of helicity λ, which is close to chirality for relativistic particles. We then have to

replace the spin by s = λsign(pz) in eqs. (2.9), (2.10) and (2.12).

3. Transport equations

In the derivation of the transport equations we closely follow ref. [7]. A crucial assumption

made in that work is that it is the kinetic momentum that is conserved in the scatterings of

WKB particles. The equilibrium phase space distributions should therefore also be written

in terms of the kinetic momentum. In the wall frame this reads

f
(eq)
i (x,p) =

1

eβγw(Ei+vwpz) ± 1
(3.1)

where β = 1/T and γw = 1/
√

1 − v2
w, and plus (minus) refers to fermions (bosons),

respectively. We model the perturbations from equilibrium caused by the passage of the

bubble wall with a fluid-type ansatz

fi(x,p) =
1

eβ[γw(Ei+vwpz)−µi] ± 1
+ δfi(x,p). (3.2)

The chemical potentials µi(z) describe a local departure from the equilibrium particle

density. The perturbations δfi model a departure from kinetic equilibrium and allow

the particles to move in response to the force exerted by the bubble wall. They do not
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contribute to the particle density, i.e.
∫

d3p δfi = 0. To second order in derivatives, we

have to distinguish between particle and antiparticle perturbations, which we can expand

as

µi = µi,1e + µi,2o + µi,2e, δfi = δfi,1e + δfi,2o + δfi,2e. (3.3)

Notice that the second order perturbations have CP-even and CP-odd parts, which we

treat separately.

Let us now concentrate on the Dirac fermion of the last section, so that we can drop

the index i to simplify the notation. We expand its distribution function to second order

in derivatives as

f ≈ f0,vw + f ′
0,vw

(γw∆E − µ1e − µ2o − µ2e) +
1

2
f ′′
0,vw

(γ2
w(∆E)2 − 2γw∆Eµ1e + µ2

1e)

+δf1e + δf2o + δf2e. (3.4)

Here f0,vw denotes the equilibrium distribution (3.1) where E is replaced by E0, and f ′
0,vw

=

(d/dE0)f0,vw . The dependence on the wall velocity is taken exact at this stage.

The evolution of f is governed by the Boltzmann equation

L[f ] ≡ (ż∂z + ṗz∂pz)f = C[f ]. (3.5)

We look for a stationary solution, so that the explicit time derivative drops. Plugging the

ansatz (3.4) into the Boltzmann equation, taking ż and ṗz from eqs. (2.10) and (2.12), and

subtracting the results of particles and antiparticles, we obtain for the flow part

L[f ]|CP−odd = −
pz

E0
f ′
0,vw

µ′
2 + γwvw

(m2)′

2E0
f ′′
0,vw

µ2 + γwvwsign(pz)
(m2θ′)′

2E0E0z
f ′
0,vw

+γwvwsign(pz)
θ′m2(m2)′

4E2
0E0z

(

γwf ′′
0,vw

−
f ′
0,vw

E0

)

+
θ′m2|pz|

2E2
0E0z

(

γwf ′′
0,vw

−
f ′
0,vw

E0

)

µ′
1 − γwvwsign(pz)

(m2θ′)′

2E0E0z
f ′′
0,vw

µ1

−γwvwsign(pz)
θ′m2(m2)′

4E2
0E0z

(

γwf ′′′
0,vw

−
f ′′
0,vw

E0

)

µ1 +
pz

E0
∂zδf2 −

(m2)′

2E0
∂pzδf2

+
θ′m2|pz|

2E3
0E0z

∂zδf1 + sign(pz)

[

(m2θ′)′

2E0E0z

−
θ′m2(m2)′

4E3
0E0z

]

∂pzδf1. (3.6)

Note that the second order perturbations present differences for particles and antiparticles,

i.e. µ2 = µ2o − µ̄2o, the same as for δf2. The CP-even parts drop. For the first order

perturbations we take µ1 = µ1e + µ̄1e, etc.

We average the Boltzmann equation over momentum,weighting it by 1 and pz/E0. We

also expand in the wall velocity, keeping only the linear order, i.e. f0,vw ≈ f0 + vwpzf
′
0. We

then obtain

vwK1µ
′
2 + vwK2(m

2)′µ2 + u′
2 − 〈C[f ]〉 = Sµ

−K4µ
′
2 + vwK̃5u

′
2 + vwK̃6(m

2)′u2 −

〈

pz

E0
C[f ]

〉

= Sθ + Su (3.7)

– 5 –



J
H
E
P
0
3
(
2
0
0
7
)
0
4
9

with the source terms

Sµ = K7θ
′m2µ′

1

Sθ = −vwK8(m
2θ′)′ + vwK9θ

′m2(m2)′

Su = −K̃10m
2θ′u′

1. (3.8)

The primes again denote derivatives with respect to z. The sources Sµ,u are related to the

first order perturbations. Notice that these are first order in vw. Formally, Sµ,u are one

order higher in gradients than Sθ. It will turn out that they indeed contribute only a small

fraction to the total source term. After momentum integration we normalize the resulting

equations by the average of the massless Fermi-Dirac distribution

〈X〉 =

∫

d3p X(p)
∫

d3pf ′
0+(m = 0)

. (3.9)

This normalization we also use for bosons to keep the interaction rates for fermions and

bosons equal. The plasma velocity we define as

u2 =

〈

pz

E0
δf2

〉

. (3.10)

The thermal averages read

K1 = −

〈

p2
z

E0
f ′′
0

〉

, K̃6 =

[

E2
0 − p2

z

2E3
0

f ′
0

]

,

K2 =

〈

f ′′
0

2E0

〉

, K7 =

〈

|pz|

2E2
0E0z

(

f ′
0

E0
− f ′′

0

)〉

,

K3 =

〈

f ′
0

2E0

〉

, K8 =

〈

|pz|f
′
0

2E2
0E0z

〉

,

K4 =

〈

p2
z

E2
0

f ′
0

〉

, K9 =

〈

|pz|

4E3
0E0z

(

f ′
0

E0
− f ′′

0

)〉

,

K̃5 =

[

p2
z

E
f ′
0

]

, K̃10 =

[

|pz|f0

2E3
0E0z

]

. (3.11)

The averages K̃i are related to averages involving δf2. Since we do not know the momentum

dependence of δf2, we make the additional assumption that these averages factorize and

then use eq. (3.10), e.g. 〈p3
zδf2〉 ≈ [p2

zE0f0,vw ]u. We normalize these averages by the massive

distribution of the boson or fermion under consideration, i.e.
∫

d3p f0,vw . Since there is

some arbitrariness in this procedure, we will test the impact of these averages, which turns

out to be small.1

The collision integrals read [7]

〈C[f ]〉 = Γinel
∑

µi,2
〈

pz

E0
C[f ]

〉

= −Γtotu2, (3.12)

1Depending on how we precisely treat the averages involving δf2, there can also arise a source term of

the form (m2)′θ′u1. We do not discuss it in more detail since the source terms related to the first order

perturbations are small anyway.
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where Γinel and Γtot are the inelastic and total interaction rates, respectively. The negative

sign in front of Γtot is related to our sign convention for the plasma velocity (3.10).

The transport equations of the first order perturbations look very similar to eq. (3.7)

vwK1µ
′
1 + vwK2(m

2)′µ1 + u′
1 − Γinel

∑

µi,1 = vwK3(m
2)′

−K4µ
′
1 + vwK̃5u

′
1 + vwK̃6(m

2)′u1 + Γtotu1 = 0. (3.13)

The source term is now first order in derivatives and CP-even. Note that here also the

quite large annihilation rates enter in Γinel.

In eqs. (3.7) and (3.13) we can approximately eliminate the plasma velocity to obtain

diffusion equations for chemical potentials. From the coefficient of the µ′′ term we can read

off the diffusion constant as [7]

D =
K4

K1Γtot
. (3.14)

Our source terms (3.8) agree with those obtained from the Schwinger-Keldysh formal-

ism. However, in ref. [15] there is one extra source term, related to the gradient renor-

malization of the Wigner function. This term seems to be missing in the Dirac equation

approach. It is of order m4, like the K9-part of Sθ. We will demonstrate in the next section

that these terms are subleading.

4. Top transport: an example

We now apply the general results (3.7) and (3.13) to top transport in an effective SM

with dimension-6 operators [17 – 20, 10]. The model contains a single Higgs doublet, whose

potential is stabilized by a φ6 interaction

V (φ) = −
µ2

2
φ2 +

λ

4
φ4 +

1

8M2
φ6. (4.1)

This potential has two free parameters, the suppression scale M of the dimension-6 operator

and the quartic coupling λ. The latter can be eliminated in terms of the physical Higgs mass

mH . Since the potential is stabilized by the φ6 term, λ can be negative. In this case a barrier

in Higgs potential is present at tree-level, which triggers a first order electroweak phase

transition. Computing the 1-loop thermal potential, it was shown in ref. [10] that the phase

transition is strong enough to avoid baryon number washout, i.e. ξ = 〈φ〉Tc/Tc > 1.1 [21],

if M <
∼ 850 GeV and mH = 115 GeV. Taking M = 500 GeV, a strong phase transition

is present for mH <
∼ 180 GeV. Thus the model allows for a strong phase transition in a

large part of its parameter space. In ref. [10] also the wall thickness has been determined,

showing that 3 <
∼ LwTc <

∼ 16. The gradient expansion discussed in section 2 is therefore

justified in almost the full parameter space. The thinnest walls correspond to a very

strong phase transition, ξ ∼ 3, where the model is close to metastability of the symmetric

phase. In the following we will approximate the wall profile by a hyperbolic tangent,

φ(z) = (vc/2)(1 − tanh(z/Lw)).

Dimension-6 operators also induce new sources of CP-violation. In addition to

the ordinary Yukawa interaction of the top quark, ytΦtcq3, we have an operator

– 7 –
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(xt/M
2)(Φ†Φ)Φtcq3 [18]. We denote the relative phase between the two couplings as

ϕt = arg(yx∗). Then the top develops a position dependent complex phase θt along the

bubble wall φ(z), with

tan θt(z) ≈ sin ϕt
φ2(z)

2M2

∣

∣

∣

∣

xt

yt

∣

∣

∣

∣

. (4.2)

So all necessary ingredients are present to apply the formalism discussed in the previous

sections.

For the generation of the baryon asymmetry, the most important particle species are

the left- and right-handed top quarks, and the Higgs bosons. We will show that the latter

have only a minor impact. We ignore leptons, which are only produced by small Yukawa

couplings. In contrast to all previous investigations we include the W scatterings with a

finite rate ΓW . This procedure allows us to study the perturbations of bottom and top

quarks separately. The top quark source is no longer locked to the bottom degrees of

freedom, which would lead to a larger or smaller baryon asymmetry, depending on the wall

velocity. The other interactions we take into account are the top Yukawa interaction, Γy,

the weak and strong sphalerons, Γws and Γss, the top helicity flips, Γm, and Higgs number

violation Γh. The latter two are only present in the broken phase.

In a first step we compute the left-handed quark density, assuming that baryon number

is conserved. Later on, the left-handed quark density will be converted into a baryon

asymmetry by the weak sphalerons. The transport equations for chemical potentials of

left-handed SU(2) doublet tops µt,2, left-handed SU(2) doublet bottoms µb,2, left-handed

SU(2) singlet tops µtc,2, Higgs bosons µh,2, and the corresponding plasma velocities read

3vwK1,tµ
′
t,2 + 3vwK2,t(m

2
t )

′µt,2 + 3u′
t,2

−3Γy(µt,2 + µtc,2 + µh,2) − 6Γm(µt,2 + µtc,2) − 3ΓW (µt,2 − µb,2)

−3Γss[(1 + 9K1,t)µt,2 + (1 + 9K1,b)µb,2 + (1 − 9K1,t)µtc,2] = 3K7,tθ
′
tm

2
t µ

′
t,1

3vwK1,bµ
′
b,2 + 3u′

b,2

−3Γy(µb,2 + µtc,2 + µh,2) − 3ΓW (µb,2 − µt,2)

−3Γss[(1 + 9K1,t)µt,2 + (1 + 9K1,b)µb,2 + (1 − 9K1,t)µtc,2] = 0

3vwK1,tµ
′
tc,2 + 3vwK2,t(m

2
t )

′µtc,2 + 3u′
tc,2

−3Γy(µt,2 + µb,2 + 2µtc,2 + 2µh,2) − 6Γm(µt,2 + µtc,2)

−3Γss[(1 + 9K1,t)µt,2 + (1 + 9K1,b)µb,2 + (1 − 9K1,t)µtc,2] = 3K7,tθ
′
tm

2
t µ

′
tc,1

2vwK1,hµ′
h,2 + 2u′

h,2

−3Γy(µt,2 + µb,2 + 2µtc,2 + 2µh,2) − 2Γhµh,2 = 0 (4.3)

− 3K4,tµ
′
t,2 + 3vwK̃5,tu

′
t,2 + 3vwK̃6,t(m

2
t )

′ut,2 + 3Γtot
t ut,2 =

= −3vwK8,t(m
2
t θ

′
t)
′ + 3vwK9,tθ

′
tm

2
t (m

2
t )

′ − 3K̃10,tm
2
t θ

′
tu

′
1,t

−3K4,bµ
′
b,2 + 3vwK̃5,bu

′
b,2 + 3Γtot

b ub,2 = 0

−3K4,tµ
′
tc,2 + 3vwK̃5,tu

′
tc,2 + 3vwK̃6,t(m

2
t )

′utc,2 + 3Γtot
t utc,2 =

= −3vwK8,t(m
2
t θ

′
t)
′ + 3vwK9,tθ

′
tm

2
t (m

2
t )

′ − 3K̃10,tm
2
t θ

′
tu

′
1,tc

−2K4,hµ′
h,2 + 2vwK̃5,hu′

h,2 + 2Γtot
h uh,2 = 0 (4.4)
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In eqs. (4.4) ΓW can be neglected since the plasma velocities of t and b are damped by the

much faster gluon scatterings.2 We have used baryon number conservation to express the

sphaleron interaction in terms of µt,2, µb,2 and µtc,2 [22]. A possible source term for the

bottom quark is suppressed by (mb/mt) and therefore neglected.

The first order perturbations of t can be computed from

3vwK1,tµ
′
t,1 + 3vwK2,t(m

2
t )

′µt,1 + 3u′
t,1 − 3Γtot

t µt,1 = 3vwK3,t(m
2
t )

′

−3K4,tµ
′
t,1 + 3vwK̃5,tu

′
t,1 + 3vwK̃6,t(m

2
t )

′ut,1 + 3Γtot
t ut,1 = 0. (4.5)

The damping of µt,1 is dominated by gluon annihilation, the rate of which we have approxi-

mated by Γtot
t . Other scatterings have been neglected. To this approximation the chemical

potentials of t and tc are identical. This guarantees that no direct source for baryon number

is induced. Such a source can be generated if µt,1 6= µtc,1. It leads to spurious effects in

the baryon asymmetry. Its appearance shows that an inconsistent approximation pattern

has been used.

We can now compute the chemical potential of left-handed quarks, µBL
= µq1,2 +

µq2,2 + (µt,2 + µb,2)/2. Assuming again baryon number conservation, we obtain

µBL
=

1

2
(1 + 4K1,t)µt,2 +

1

2
(1 + 4K1,b)µb,2 − 2K1,tµtc,2. (4.6)

The baryon asymmetry is then given by [7]

ηB =
nB

s
=

405Γws

4π2vwg∗T

∫ ∞

0
dz µBL

(z)e−νz , (4.7)

where is Γws the weak sphaleron rate and ν = 45Γws/(4vw). The effective number of degrees

of freedom in the plasma is g∗ = 106.75. In eq. (4.7) the weak sphaleron rate has been

suddenly switched off in the broken phase, z < 0. The exponential factor in the integrand

accounts for the relaxation of the baryon number if the wall moves very slowly. Note

that we have performed our computation in the wall frame. Therefore, strictly speaking

eq. (4.7) gives the baryon asymmetry in that frame. To first order in vw this is identical

to the baryon asymmetry in the plasma frame.

In our numerical evaluations we use the following values for the weak sphaleron

rate [23], the strong sphaleron rate [24], the top Yukawa rate [22], the top helicity flip

rate, the Higgs number violating rate [22], the quark diffusion constant [4] and the Higgs

diffusion constant [7]

Γws = 1.0 × 10−6T, Γss = 4.9 × 10−4T,

Γy = 4.2 × 10−3T, Γm =
m2

t (z, T )

63T
,

Γh =
m2

W (z, T )

50T
, Dq =

6

T
,

Dh =
20

T
. (4.8)

2In the numerical evaluations we have included a term 3ΓW (ut,2 −ub,2) which affects results only at the

few percent level.
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We use eq. (3.14) to infer the total interaction rates from the diffusion constants. In this

procedure we evaluate the thermal averages at z = 0, i.e. in the center of the bubble wall.

The W scatterings we approximate as ΓW = Γtot
h . The bottom quark is taken as massless,

and the Higgses we count as 2 massless complex degrees of freedom. The rates of eq. (4.8)

have been computed in the plasma frame. We assume that, to leading order in vw, they

can also be used in the wall frame.

To demonstrate the relevance of the various contributions to the full transport equa-

tions, we compare the baryon asymmetry computed in different approximations for two

typical parameter settings. We take |xt| = 1 and maximal CP violation sinϕt = 1. Fig-

ure 1 shows ηB as a function of the wall velocity vw. The other parameters we have chosen

as ξ = 1.5, M = 6 and Lw = 8. These values correspond to a setting where the baryon

asymmetry is close to the observed value ηB = (8.9 ± 0.4) × 10−11 [25, 26]. In figure 2 we

use ξ = 2.5, M = 6 and Lw = 3, i.e. a very strong phase transition with a small wall width.

In both figures the bold solid line (a) indicates ηB using the source terms Sθ and keeping

the full z-dependence of the thermal averages (3.11).

In (b) we drop the space-dependence of the thermal averages. We rather evaluate them

at the center of the bubble wall, i.e. Ki,t(z) ≡ Ki,t(z = 0). Formally, the space-dependence

of the thermal averages is a higher order effect in gradients. But this approximation

considerably underestimates the baryon asymmetry, especially for small wall velocities and

thin bubble walls. The full z-dependence reduces the impact of the wall velocity on ηB .

The long-dashed line (c) shows the result when we resubstitute E0z → E0, going back

to the dispersion relation of ref. [7]. This would considerably reduce the baryon asymmetry,

in particular for weaker phase transitions (figure 1).

Neglecting the Higgs bosons in the transport eqs. (4.3) and (4.4) leads to a reduction

of ηB by ' 10% (d), almost independent of the wall velocity and the strength of the phase

transition.

Taking the W scatterings to equilibrium (e) has a substantial effect on the resulting

baryon asymmetry, especially for strong phase transitions. In figure 2 it overestimates ηB

by a factor of almost 2 for vw < 0.1. For large wall velocities there is an underestimate of

ηB by a similar size. Keeping W scatterings finite results in a much milder vw-dependence

of the baryon asymmetry.

The dash-dotted line (f) adds the contributions of Sµ + Su to line (a). The effect of

these source terms is quite small, consistent with the fact that they are of higher order

in gradients. They enhance the baryon asymmetry in the whole vw-range only by a few

percent.

Line (g) shows the effect of switching off the terms proportional to K̃5 and K̃6. If these

terms are neglected, the final result is reduced by a contribution proportional to the wall

velocity. It demonstrates that the precise treatment of the averages involving δf has only

a minor impact on the baryon asymmetry.3

3Numerically there is also not much difference to the prescription used, for instance, in ref. [10], where

plasma velocities were included in the fluid ansatz, rather than using a general δf . Then, for example, the

u′

2 term in eq. (3.7) obtains an additional coefficient ∼ 1.1.
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Figure 1: The baryon asymmetry as a function of vw for ξ = 1.5, M = 6 and Lw = 8. The labeling

is explained in the text.
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Figure 2: The baryon asymmetry as a function of vw for ξ = 2.5, M = 6 and Lw = 3.

– 11 –



J
H
E
P
0
3
(
2
0
0
7
)
0
4
9

Altogether the examples demonstrate that the leading contribution to ηB comes from

the source Sθ. The baryon asymmetry gets considerably enhanced by using the dispersions

relation with the correct factors of E0z and keeping the space-dependence of the thermal

averages. The finite W scattering rate has a sizable effect, the direction of which depends

on the wall velocity. The resulting vw-dependence of the baryon asymmetry is rather mild.

The baryon asymmetry grows slowly with increasing vw and reaches a maximum at vw '

0.2–0.3. Taking the Higgs bosons or the Sµ + Su sources into account is less important.

Their effect is not larger than typical uncertainties from higher order terms in the gradient

expansion.

The source Sθ consists of two parts, proportional to K8 and K9. The latter has

an additional factor m2, leading to an extra suppression, in particular for weak phase

transitions. For instance, taking vw = 0.1 and the parameter set of figure 1, the K9-part

contributes only about 15% to the total baryon asymmetry. As indicated earlier, there is

an extra source term in ref. [15], which is related to the gradient renormalization of the

Wigner function. It also has an extra factor of m2 and therefore should also be sub-leading

in our case.

Of course, the baryon asymmetry also depends on the precise values of the interaction

rates (4.8). For instance, reducing the quark diffusion constant by 10% leads to an about

7% reduction in the baryon asymmetry (taking vw = 0.1 and the parameter set of figure 1).

Changing ΓW by 10% affects ηB to less than 1%, even for vw ∼ 0.01, where the impact of

the W scatterings is particularly large.

Figure 3 displays the baryon asymmetry in the SM with a low cut-off as a function of the

cut-off scale M . We consider two different Higgs masses mH = 115 GeV and mH = 150 GeV

and two wall velocities vw = 0.01 and 0.3. For each value of M the corresponding strength of

the phase transition and bubble width are computed as in ref. [10]. As expected ηB increases

rapidly with decreasing cut-off scale M . The asymmetry has only a minor dependence on

the wall velocity. In both cases it is possible to generate the measured baryon asymmetry

for a reasonably small value of M .

5. Conclusions

We have improved on the computation of the baryon asymmetry arising from top transport.

Making use of the one-particle Dirac equation in the wall background, we have reviewed

the calculation of CP-violating source term in the WKB approximation. When the top

dispersion relation is correctly boosted to a general Lorentz frame, the Schwinger-Keldysh

result [13, 15] for the semiclassical force term is obtained in eq. (2.12) [14]. The CP-

violating source term is enhanced with respect to ref. [6]. We have only considered the

case of a single Dirac fermion, but our results should simply generalize to mixing fermions,

such as to the charginos in the MSSM.

In the WKB approach one cannot obtain the extra source term of ref. [15], which is

related to the gradient renormalization of the Wigner function. In the case of top transport

this term is subleading since it is of order m4. In this approach, of course, one also cannot

obtain source terms related to quantum mechanical oscillations between different fermion
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Figure 3: The baryon asymmetry in the SM with low cut-off for two different Higgs masses as a

function of M (in units of GeV) for vw = 0.01 (solid) and vw = 0.3 (dashed). The horizontal lines

indicate the error band of the observed value.

flavors. In the case of the top quark this effect is obviously not present, but it can be

relevant for the charginos in the MSSM [27].

We have demonstrated the numerical significance of the corrected dispersion relations

in the SM augmented by dimension-6 operators. This effect alone enhances the baryon

asymmetry by a factor of up to about 2. We have also improved on the transport equations,

keeping scatterings with W bosons at a finite rate. Depending on the wall velocity and

the wall thickness, putting the W scatterings to equilibrium (as was done so far in the

literature) can increase or decrease the baryon asymmetry by a factor of 2. It would be

interesting to study the impact of this effect in supersymmetric models, where the SU(2)

supergauge interactions have been put to equilibrium as well.

We have shown that the position dependence of the thermal averages in the transport

equations has a substantial impact on the baryon asymmetry, even though it is formally a

higher order effect in the gradient expansion. Finally, the influence of the Higgs bosons on

transport turned out to be small, as is the contribution of the sources Sµ,u (3.8). In total,

depending on the model parameters, our refinements can increase the baryon asymmetry

by a factor of up to about 5.

The rather large impact of the precise treatment of the W scattering rate and the

space-dependence of the thermal averages probably indicate that there is still a substantial

uncertainty related to transport.

In a forthcoming publication we will apply the framework presented here to compute
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the baryon asymmetry in the two Higgs doublet model [28].
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